

The ExaVolt Antenna (EVA)

Carl Pfendner (in place of Amy Connolly)
Ohio State University
for the EVA collaboration

(University of Hawaii, OSU, George Washington University, NASA: JPL and Balloon Program Office)

ICRC 2013 July 6th, 2013

Motivations for ultra-high energy (UHE) neutrinos (>10¹⁸ eV)

 Greisen-Zatsepin-Kuzmin (GZK): Cosmic rays >10^{19.5} eV slowed by cosmic microwave background (CMB) photons within ~50 Mpc:

$$\mathbf{p} + \gamma_{\text{CMB}} \rightarrow \mathbf{\Delta}^* \rightarrow \mathbf{n} + \pi^+$$

v's from GZK process first pointed out by Berezinsky and Zatsepin (1969)

$$\mathbf{n} \to \mathbf{p} + \mathbf{e}^{-} + (\overline{\nu_{\mathbf{e}}})$$

$$\pi^{+} \to \mu^{+}(\nu_{\mu})$$

$$\mu^{+} \to \mathbf{e}^{+}(\overline{\nu_{\mu}}\nu_{\mathbf{e}})$$

 Sources of UHE cosmic rays should also produce UHE neutrinos through photohadronic interactions

Radio Cerenkov Technique (Askaryan Effect)

- Coherent Cerenkov signal from net "current,"
 Idea by Gurgen Askaryan (1962)
 instead of from individual tracks
- A ~20% charge asymmetry develops (mainly Compton scattering)
- Excess moving with v > c/n in matter
 - → Cherenkov Radiation dP « v dv
- If $\lambda >> R_{Moliere} \rightarrow Coherent Emission$ P ~ N² ~ E²
 - $\lambda > R_{Moliere}$
 - → Radio/Microwave Emission

R_{Moliere} ≈ 10 cm → Radio!

This effect has been confirmed experimentally in sand, salt, ice:
PRL 86, 2802 (2002)
PRD 72, 023002 (2005)
PRD 74, 043002 (2006)

PRL 99, 171101 (2007)

Radio Cerenkov Balloon Experiments

ANITA

ExaVolt Antenna (EVA) concept

P. W. Gorham et al., *The ExaVolt Antenna: A Large-Aperture, Balloon-embedded Antenna for Ultra-high Energy Particle Detection,* Astroparticle Physics, **35** No. 5 (2011) 242-256.

- Would be the world's largest aperture airborne telescope
 - 1000's of square meters
 - 150-600 MHz (λ_{air} ≈0.5-2 m)
- Increase in sensitivity to radio frequency neutrino impulses by factor of 100 over any previous experiment

3 year feasibility study funded by NASA

~10 m high

reflective

Zero Pressure Balloons (ZPB) vs. Super Pressure Balloons (SPB)

Zero Pressure Balloons (e.g., ANITA)

- Balloon pressure at equilibrium with ambient pressure at float altitude
- Shape can change dramatically with thermal environment
- ANITA: 40% drop in volume while over east Antarctica

Super Pressure Balloons (under development, proposed for EVA)

SPB flight 591NT

- Balloon pressure higher than outside pressure
- Height, diameter changed by 1% in 54 day flight 591NT (December 2008) 7Mft³ over Antarctica
- SPB launches continue with larger balloons of long duration flights. Early 2011: Antarctic flight 616NT 14 Mft³

Reflectors on outer balloon

- To find reasonable size for reflector region:
 - Want reflected signals across reflector region to have small path length differences

- Path difference less than 1/4 wavelength for a reflector band ± 30°, 20 m high
 - ± 25°, 11 m high more conservative
- 1000 m² of coherent surface area

Feed array on inner balloon

- Reflected signals received by feed array on inner membrane
 - NEC2 simulations show surface of best focus is convex (same sign of curvature as balloon)
- Planar patch antennas (flat, inexpensive) with dipole-like response (size ~λ/2)
- Focal plane is ~3m high
 - 5 rows of patch antennas
- 1200 patch antennas cover surface area of feed region

Dual linear polarization sinuous antenna

Gains

- Nec2 simulation of ± 25°, 11 m high reflector region
- For vertical polarization 200-500 MHz, gain exceeds
 ~500 times isotropic = 27 dBi

x 100 in gain → ÷ 100 in power threshold
 ÷ 10 in E field threshold → ÷ 10 in v energy threshold

Logistics

- After the antennas, the RF chain will build on ANITA heritage
- In close proximity to patch antennas:
 - bandpass filter, low noise amplifier ~36 dB
 - second stage amplifier ~20 dB to analog optical driver

onto optical fiber

- Optical fiber to payload at the bottom
- 0.8W per channel x 1200 patch antennas supplied by 1.2 kW photovoltaic array

Pumpkin shape with lobes provides structural stability

Scaled down model at University of Hawaii

- At UH, Gorham et al. constructed microwave scale model testbed to test a reflector section
- 1/35 and 1/26 scale models of a 25 Mft³ SPB

- Measure directivity gain of 220 relative to isotropic at 6.6
 GHz corresponding to 260 MHz for full scale
- Measured focal region (scaled to full size balloon) ~1.14m
 (Φ) x 3-4m (θ) x >3m

EVA event rates for neutrinos from GZK process

BZ neutrino models	Events,	Events,	ratio,
	ANITA- II , $28d$	EVA,50d	EVA/ANITA
Mixed UHECR composition [30]	0.05	5.0	100
Minimal, no evolution [3, 32, 33]	0.3-0.9	9.2-38	~ 40
$\Omega_m = 0.3, \Omega_{\Lambda} = 0.7$, Standard model [3]	0.7	29	41
Waxman-Bahcall E^{-2} flux (minimal) [34]	0.49	6.5	13
GRB UHECR-sources [46]	1.44	66	46
Strong source z-evolution [3, 31, 33]	2.2-5.3	40-60	11-18
Maximal, saturate all bounds [31, 33]	16-25	180-220	~ 10

Gorham et al. (2011)

- For a standard model, a factor of 40 increase in event rate over ANITA-II
- Can even reach extremely scarce neutrinos from mixed UHECR composition models
- Also expect ~300 CR events/day from geomagnetic

Plans and Summary

- Planning a 1/20 scale model inflation and deployment test in a ~20m highbay at NASA's Wallops Flight Facility in Virginia, USA
- Stayed tuned for the full EVA!

