#### **UHE Neutrino Radio Detectors**

## Carl Pfendner Ohio State University



Cosmic Messages in Ghostly Bottles February 27-28, 2014 Ohio State University Physics Department





#### Outline

- Introduction
- Balloon Experiments
  - Antarctic Impulse Transient Antenna (ANITA)
  - ExaVolt Antenna (EVA)
- In situ arrays
  - Radio Ice Cherenkov Experiment (RICE)
  - Askaryan Radio Array (ARA)
  - Antarctic Ross Ice-Shelf ANtenna Neutrino Array (ARIANNA)
- Observables and Challenges
- Conclusions

## Cosmic Messengers

- Cosmic rays
  - Charged subject to magnetic deflection
  - Lose energy to GZK
- Gamma rays and other photons
  - Attenuation
- Neutrinos
  - No attenuation or deflection
  - Weakly interacting difficult to observe
  - Only extraterrestrial sources
    - Sun, Supernova 1987A
    - new IceCube events



#### **GZK Process and Sources**

- Cosmic rays with  $E > 10^{19.5} eV$ interact with cosmic microwave background (CMB) photons
- Cosmic rays above this energy are limited to a range of ~75 MPc
- Process produces neutrinos, some at UHE
- Neutrinos are not subject to these successive interactions and happily continue on.
- UHE neutrinos could also be produced at a source location rather than through GZK
  - If observed, will trace back to source





## Large Volume Detectors

- Consider GZK models, Antarctic ice, earth shadowing, neutrino cross sections
  - Less than 1/km³/year/energy decade
- IceCube O(1 km³) of ice discovery scale
  - optical Cherenkov radiation limited range, attenuates in ice
  - Better sensitivity at lower energies (more PeV, less EeV)
- ARA O(100 km<sup>3</sup>) of ice sensitive to energies up to 10<sup>20</sup> eV
  - This size needed for observatory-like detection of UHE neutrinos
- ANITA O(1000000 km<sup>3</sup>) of ice 700 km to horizon
  - Balloon experiment ~30 day flight time
  - Sensitive to higher energies than ARA but weaker at 1EeV

## Detection technique

- How to get large-scale detection -
  - Brute force: make 100 IceCubes
  - Use a different approach radio Cherenkov technique
  - Coherent Cerenkov signal from net "current," instead of from individual tracks
    - A ~20% charge asymmetry develops in the shower
    - − If  $\lambda >> R_{Moliere}$  (radial size scale) → Coherent Emission
    - Hypothesized by Gurgen Askaryan, 1962
    - Observed in various dielectric media: ice, water, salt
    - Impulsive signal
  - Attenuation of radio signal is considerably less than optical thus a signal detector unit has a far greater observable volume



E-M shower (gamma ray in air)

#### Outline

- Introduction
- Balloon Experiments
  - Antarctic Impulse Transient Antenna (ANITA)
  - ExaVolt Antenna (EVA)
- In situ arrays
  - Radio Ice Cherenkov Experiment (RICE)
  - Askaryan Radio Array (ARA)
  - Antarctic Ross Ice-Shelf ANtenna Neutrino Array (ARIANNA)
- Observables and Challenges
- Conclusions

## Balloons vs in situ Arrays

#### Balloons

- Large target volume, short flight time 30-40 days
- Must be reconstructed after flight and "landing"
- Good as a "discovery" instrument

$$F = \frac{N}{At\Omega E}$$

- In situ arrays
  - Long operation time, "always on" but smaller observable volume
  - Environmental problems in situ
    - Need to model the environment
  - Good as an observatory long term stability

## Radio Cerenkov Balloon Experiments

#### **ANITA**



# proposed ExaVolt Antenna (EVA)



## **ANITA Design**

- Payload consists of an array of quad-ridge horn antennas
- Antennas aimed down 10° to view ice rather than sky
- 2.6 GHz data sampling and fast triggering electronics
  - Signal range = 150-1000MHz



## **ANITA Flights and Differences**

- ANITA-I flew austral summer 2006-2007
  - 18 days good livetime, cosmic ray events observed
- ANITA-II flew austral summer 2008-2009
  - Added 8 antennas over ANITA-I, optimized trigger
  - Lower noise amplification, directional mask
  - No h-pol trigger
- ANITA-III planned for 2014-2015 pole season
  - Added 8 new antennas over ANITA-II
  - Optimized for neutrinos and cosmic rays

#### **ANITA Results**

- ANITA-I observed radio signals from 16 cosmic ray showers
  - Radio signals produced by geosynchrotron emission
  - Majority of events reflected from the ice surface
  - Some direct events
- No neutrinos but placed competitive limits above 1 EeV





S. Hoover et al.

## ExaVolt Antenna (EVA) concept

- Design balloon to be a apart of the detector
  - Put reflector on exterior to focus signal inwards
- Would be the world's largest aperture airborne telescope
  - 1000's of square meters
  - 150-600 MHz (λ<sub>air</sub>≈0.5-2 m)
- 100X increase in sensitivity to radio signals
- Currently under development with 3 year NASA engineering study



incoming plane wave at -6 to -13 degrees below horizontal

## **EVA** Design

- Use a super pressure balloon (SPB) instead of standard zero pressure balloon
  - Maintains relatively consistent lobed geometry (like a pumpkin)
- Feed array on suspended surface within balloon
  - 3m high, 5 rows of total 1200 feed antennas
- Planned 1:20 scale hang test at Wallops Flight facility later this spring





outer balloon diameter 112 m, 29 Mft<sup>3</sup>

#### Gains

- Nec2 simulation of ± 25°, 11 m high reflector region
- For vertical polarization 200-500 MHz, gain exceeds ~500 times isotropic = 27 dBi



 $\rightarrow \div 10$ 

- x 100 in gain → ÷ 100 in power threshold in E field threshold → ÷ 10 in v energy threshold
- For most GZK models, at least a factor of 10 increase in event rate over ANITA-II; could even reach mixed composition models

### Outline

- Introduction
- Balloon Experiments
  - Antarctic Impulse Transient Antenna (ANITA)
  - ExaVolt Antenna (EVA)
- In situ arrays
  - Radio Ice Cherenkov Experiment (RICE)
  - Askaryan Radio Array (ARA)
  - Antarctic Ross Ice-Shelf ANtenna Neutrino Array (ARIANNA)
- Challenges and Observables
- Conclusions

## Radio Ice Cherenkov Experiment

- Antennas deployed in AMANDA boreholes
- First in situ radio
   Cherenkov array
- Placed competitive limits on UHE neutrino flux



## Askaryan Radio Array (ARA)

- Array of antennas designed to detect UHE neutrinos using radio Cherenkov technique (Askaryan effect) at South Pole
- Deployed a shallow TestBed prototype and 3 deep stations
  - 16 borehole antennas / station at 200MHz to 800MHz
    - 8 vertically polarized (Vpol), 8 horizontally polarized (Hpol)
  - Stations A2, A3 drilled to design depth of 200 m



2/27/14 - 2/28/14 Neutrino Workshop 18

#### **ARA**

- 2 GHz data sampling and fast triggering
- 3 out of 8 (Hpol or Vpol) antennas pass power threshold within 110 ns
  - Signal expected to be dominated by one or the other polarization
- Currently finalizing first analyses of TestBed data taken from 2011-2012
  - Beginning to extend analysis to A2, A3
- Developing rigorous detector simulation (AraSim)
  - Want to include entire signal chain from shower development to digitized RF waveform





## ARA (continued)

- Calibration
  - ICL pulser
  - In-ice calibration pulsers
  - Surface pulsers (2013-2014 season)
- Backgrounds radio is very active even at Pole!
  - Continuous wave (single frequency)
    - weather balloons
    - communications frequencies filter at 450 MHz
  - Impulsive SPS, other man-made sources on ice, static discharges
- Reject events that point to repeated locations, known source locations





#### **ARIANNA**

- Array of antennas on the surface of Ross Ice Shelf in Antarctica
  - Antennas buried just under the ice surface
- Recently completed a hexagonal array of stations
- Radio Cherenkov signals reflected from the bottom of the ice sheet
  - Could potentially see more "down-going" events
  - Relies on detailed knowledge of ice sheet



### Outline

- Introduction
- Balloon Experiments
  - Antarctic Impulse Transient Antenna (ANITA)
  - ANITA Results
  - ExaVolt Antenna (EVA)
- In situ arrays
  - Radio Ice Cherenkov Experiment (RICE)
  - Askaryan Radio Array (ARA)
  - Antarctic Ross Ice-Shelf ANtenna Neutrino Array (ARIANNA)
- Challenges and Observables
- Current Results

#### Observables

- What information about the neutrino do we want to extract?
  - Energy, pointing direction, flavor
- How do we get there?
  - received radio signals -> information about neutrino
  - Must interpret the radio signal
    - relative timing, shape, amplitude, polarization
  - Need refined modeling of radio Cherenkov signal
    - Shower emission model, ice model, LPM effect

## **Pointing Direction**

- Want to trace events back to a point in the sky
  - Source? Diffuse?
- Pointing direction of incoming neutrino needs
  - Reconstructed position
  - Polarization
  - Known Cherenkov angle (~56°)
- Cherenkov ring depends on direction of shower/incident neutrino
- Rejection of known sources and clusters of events
  - South Pole Station, weather balloons, etc.



#### Position Reconstruction

- Impulsive waveform ~1-10 ns time scale
- Correlation factor Convolution of the two waveforms including a timing offset
- Only Vpol-to-Vpol comparison and Hpol-to-Hpol comparison
- Calculate timing delays for all angles of approach
- Sample correlation plot at these delays
- Many positions will produce the same timing delays for a pair of antennas

 Solution: Use more antennas - Add up all the correlation values from all the pairs of antennas



#### Concerns for Reconstruction

- Anything that affects timing delays will affect the correlation map
- The index of refraction of the ice
  - The values themselves
  - How they change in the ice
    - First 150 m "firn" rapidly changing n
    - Changing n -> Snell's law
    - Curvature in path
    - Some areas excluded
- Electronics delays measure them
- Use calibration pulser, surface pulsers, ICL pulser to get additional timing information
- Geometric assumptions plane-wave vs spherical vs other (ray tracing)
- Also noise over the signal can severely wash out the correlation



Ray Tracing with Different Depth



## **Energy of Primary**

- Primary → shower development → viewing angle
   → received radio signal
- Energy reconstruction will depend on
  - signal strength, signal shape
  - Reconstruction information
- Shape and amplitude of the signal depend on
  - Energy of primary proportional to charge in shower
  - Charge excess profile of particle shower
  - Deviation from Cherenkov angle
    - Also dependent on ice model

## Cherenkov angle

- Viewing angle relative to the Cherenkov angle changes the shape and magnitude of the signal
  - Faster signal at Cherenkov angle
  - Can also be examined in frequency domain







## LPM effect

- At sufficiently high energies, interaction length increases dramatically
- Hadronic showers
  - For E<sub>v</sub> > 1 EeV, LPM effect becomes important
- Electromagnetic showers
  - E<sub>LPM,E-M</sub> = 2.4 PeV
  - EeV neutrinos will show lengthening of shower profiles
- Shower profile →
   charge excess profile →
   radio signal
- Developing models for including LPM effect in radio pulse profile



J. Alvarez-Muniz and E. Zas, ICRC 1999, arXiv:astro-ph/9906347

#### Flavor determination

- v<sub>e</sub> produces prompt hadronic and electromagnetic showers
- $v_{\mu}$  and  $v_{\tau}$  produce initial hadronic shower, stochastic losses, final hadronic shower, different lengths for produced  $\mu$  and  $\tau$
- Each shower produces a radio Cherenkov signal
  - For  $v_{\mu}$  and  $v_{\tau}$ , multiple radio pulses with observable delays
- Analyses of ANITA data look for repeated triggers with short delays for magnetic monopoles too (Phys.Rev.D83:023513,2011)



### Outline

- Introduction
- Balloon Experiments
  - Antarctic Impulse Transient Antenna (ANITA)
  - ANITA Results
  - ExaVolt Antenna (EVA)
- In situ arrays
  - Radio Ice Cherenkov Experiment (RICE)
  - Askaryan Radio Array (ARA)
  - Antarctic Ross Ice-Shelf ANtenna Neutrino Array (ARIANNA)
- Challenges and Observables
- Current Results

## **Experimental Sensitivity**

- Trigger level sensitivity for ARA and EVA
- EVA's sensitivity extends to 10X lower energies than ANITA-II
- ARA3 already built, taking data
  - Working on analysis
- ARA37 planned



#### Conclusion

- The next generation of radio Cherenkov detectors is being built
  - Both balloon experiments and in situ arrays
- Will probe neutrino fluxes in EeV energy regime
- Analysis underway on preliminary ARA data
- Further modeling and simulation is necessary to fully interpret any neutrino signals observed from these detectors

## Questions?

