First Neutrino Search Results from the Askaryan Radio Array

Carl Pfendner for the ARA Collaboration Ohio State University November 10, 2014

INTRODUCTION

GZK Process and Sources

- Greisen-Zatsepin-Kuzmin (GZK): Cosmic rays with E > 10^{19.5} eV interact with cosmic microwave background (CMB) photons
- Process produces BZ neutrinos, some at ultrahigh energies (UHE)
- Neutrinos are not subject to these successive interactions and happily continue on.
- UHE neutrinos could also be produced at a source location
 - If observed, will trace back to source

Large Volume Detectors

- Consider GZK models, Antarctic ice, earth shadowing, neutrino cross sections
 - Less than 1/km³/year/energy decade
- Synoptic balloons, satellites ANITA, EVA, PRIDE
 - Large target volume O(10⁶ km³); short flight time 30-40 days
 - More limited viewing angles → less solid angle
 - Must be reconstructed after flight and "landing"
 - Good as a "discovery" instrument for highest energies (>10²⁰ eV)
- In situ arrays IceCube, HEX/NGI, RICE, ARA, ARIANNA
 - Long operation time (years); smaller observable volume O(100 km³)
 - Larger solid angle for observable signals
 - Environmental problems in situ measure and model environment, ice
 - But better able to obtain more information about event direction, pol., etc.
 - Good as an observatory long term stability, reaches lower energy (10^{17} eV)

Detection technique

- How to get large-scale detection -
 - Brute force: make 100 IceCubes
 - Use a different approach radio Cherenkov technique
 - Coherent Cherenkov signal from net "current," instead of from individual tracks
 - A ~20% charge asymmetry develops in the shower (positrons annihilated, electrons not)
 - − If $\lambda >> R_{Moliere}$ (radial size scale) → Coherent Emission
 - Hypothesized by Gurgen Askaryan, 1962
 - Effect observed in ice, water, salt
 - Impulsive bipolar signal
 - Long (~1 km) attenuation lengths in 0.1-1
 GHz → large observable volume

Detector Concept

- Place antennas in ice to observe the radio signals
- Delays in arrival times used for reconstruction
- 3-D array design for each station
 - Varying baseline directionsnot localized to 1 plane
 - Good reconstruction in arrival direction from surrounding ice volume
- Observation angle determines the coherence of the signal and thus frequency content

EXPERIMENT AND DETECTOR

ARA layout

- Currently installed: 3 design stations + 1 shallow prototype Testbed
 - Installation dates: Testbed 2010-2011 @ 30 m depth;
 - A1 2011-2012 @ 100m depth; A2 and A3 2012-2013 @ 200 m depth
- Next installation phase: 7 more stations for ARA10
- Total planned 37 stations viewing ~ 100 km² of surface area

Station Design

Hpol quad-slotted cylinder antenna

Vpol bicone antenna

- 4 strings with 4 antennas each
 - 2 pairs (upper and lower) of 1 Vpol and 1Hpol antenna
- 2 Calibration pulser antennas @ receiver antenna depth
- 4 fat dipole antennas at surface for cosmic ray identification
- Deployed 200m deep in ice minimize effect of firn layer

- Bandwidth: 150-850 MHz
- Azimuthal symmetry, dipole at low frequencies

Importance of Deep Deployment

- Firn layer of compacted snow
 - Quickly changing index of refraction (~1.35 → ~1.78 within top ~150 m of ice)
 - Causes curvature in paths of rays in ice
 - Limits viewable volume and observable neutrino incident angles
 - $-30 \text{ m} \rightarrow 200 \text{ m}$ depth: increases effective volume by factor of ~3.2

ANALYSIS STATUS I: TESTBED

Testbed Analysis

Workshop 2014 - Annapolis, MD, USA

- Total 16 antennas, 8 borehole antennas at 150 MHz to 850 MHz
- Maximum depth of antennas ~ 30 m
- 3 sets of calibration pulsers
 - Each set has a Vpol and an Hpol pulser
- First ARA neutrino searches carried out with Testbed station data

Calibration pulser event waveform from 8 deep antennas in Testbed

ARA – Testbed Neutrino Analysis

- Standard ARA blinding protocol examine 10% of data to characterize backgrounds and tune cuts
 - Thermal Noise
 - Continuous wave (CW)
 - Anthropogenic impulsive background
- 3 analyses ~330 million events
 - Concentrate on 2 comparable analyses covering 2011-2012
- Interferometric Map (IM) Analysis
 - stage 1: Feb-Jun 2012; stage 2: Jan 2011-Dec 2012
 - Interferometric reconstruction from ray-traced cross-correlation map
 - Optimized cuts for background rejection and signal retention
- Coherently Summed Waveform (CSW) Analysis Jan 2011 Dec 2012
 - Uses least-squares fit to a source location
 - Examines the coherently summed waveform for power
- Template analysis Identify similar waveforms, Based on RICE heritage

IM analysis - Reconstruction Quality Cut

- Reconstruction based on timing from ray-tracing
 - Use 30 m and 3 km maps in Hpol and Vpol
- Requires at least one reconstruction map to be of good quality
 - 1 deg² < Area of 85% contour surrounding the peak < 50 deg²
 - Total 85% contour peak area < 1.5 x Area of 85% contour surrounding the peak
- Depending on the polarizations which pass the cut, the event is separated into Vpol and/or Hpol channels
- Rejects ~95% of noise-dominated events after initial quality cuts

IM analysis - Reconstruction Quality Cut

- Reconstruction based on timing from ray-tracing
 - Use 30 m and 3 km maps in Hpol and Vpol
- Requires at least one reconstruction map to be of good quality
 - 1 deg² < Area of 85% contour surrounding the peak < 50 deg²
 - Total 85% contour peak area < 1.5 x Area of 85% contour surrounding the peak
- Depending on the polarizations which pass the cut, the event is separated into Vpol and/or Hpol channels
- Rejects ~95% of noise-dominated events after initial quality cuts

2nd V_{peak} / Correlation Cut

- Other cuts: Data Quality cut, Down cut, CW cut, Delta delay cut, Gradient cut, Geometry
 cuts (clustering, South Pole, Calibration Pulser), periods of known increased activity at South
 Pole
- Expect a correlation between V_{peak}/RMS from waveform and correlation value from reconstruction map for an impulsive event
- After removing known background events with other cuts, use this relation to get background estimation
- We optimized the cut for best limit on maximal Kotera et al. model
- As a last cut, this rejects 22% of Kotera neutrino flux

Testbed 10% data set after cuts applied

Max Correlation Value

Simulated 10¹⁸eV v set with cuts applied

Max Correlation Value

JSI Multi-messenger and PeV Neutrino Workshop 2014 - Annapolis, MD, USA

CSW Analysis Reconstruction

- Obtain coherently summed waveform (CSW):
 - Iteratively find the best correlation between a waveform and the CSW;
 obtains set of delays with best correlation
- Compare delays used to make the CSW to delays expected from putative source positions: minimize $\chi^2 = \Sigma (T_{\text{expected}} T_{\text{observed}})^2$
- Cut events with $\chi^2 > 2$.
- Also cut events with excess CW power

CSW - "Powherence" Cut

- Linear combination of:
 - peak power of the CSW
 - sum of the maximum correlation values of antennas with the CSW of the remaining antennas
- Expect impulsive events to separate out from noise, CW

Clustering – IM, CSW

- Both analyses reject events reconstructing to a location where an excess of events can be found
- Also reject South Pole phi range and require reconstruction in the ice

Analysis Results

- Interferometric Map Analysis
 - Stage 1: 3 events passed cuts
 - Known background event types, adjusted the gradient and clustering geometric cuts to better match those types
 - Stage 2: 2 events passed cuts
 - Also known backgrounds, slightly expanded clustering geometry cuts to reject the events (5% change in rejected area)
- Coherently Summed Waveform Analysis: 1 event passed cuts
 - CW event with two carrier frequencies, non-impulsive
- No neutrino candidates

Sensitivity

- First diffuse limits from ARA Testbed found
 - see <u>arXiv:1404.5285</u>
 - Submitted to Astropart.
 Phys.
- Limits comparable for the two 2011-2012 analyses
- Projected sensitivity of 37-station array extends to GZK flux models

Testbed GRB analysis

- Adapt the Interferometric Map Analysis techniques to search for events coincident with known Gamma Ray Bursts
 - Stricter requirements in time \rightarrow relaxation of cut values
- 2 unblinding stages Tune cuts on 10% data sets → 90%
 - 1: Background estimation only blue period
 - 2: Signal search +/- 5 minutes around GRB event time

GRB Selection

- Selected 57 GRBs based on livetime and geometric acceptance
- Get fluences for each GRB from NeuCosmA simulation and overall
- Tune cuts based on modeled neutrino fluence
- Relaxed Reconstruction Quality, Peak vs CC, Delay Difference cuts

Preliminary Results

- Stage 1 (background period unblinding):
 - Expected background events: 1.166
 - 1 event survived
- Stage 2 (signal period unblinding):
 - Expected background: 0.106, Expected neutrinos: 1.47e-5
 - 0 events survived
- First quasi-diffuse flux limit above 10¹⁶ eV

ANALYSIS STATUS II: DEEP STATIONS

Deep Station Analysis

- First efforts to examine data from 10 months of data from 2 design stations at 200 m depth
- Improvements in
 - Data quality
 - Further from
 South Pole Station
 - Effective volume
 - 3X over Testbed
 - Analysis efficiency

Noise filtering

5 Hz thermal noise trigger rate

→ Needs to be reduced before applying sophisticated algorithms

Time sequence algorithm:

- Boosted hit count
- Simple algorithm (possible usage as trigger)
- Generate hit pattern with threshold on energy envelope (red line)
- Check hit pattern on conformity with incoming plane wave
- → quality parameter (similarity to wavefront)x(hit count)

Quality Parameter for simulated neutrinos

Vertex reconstruction

We need:

 Angular reconstruction of vertices, to distinguish neutrinos from other sources

The algorithm:

1. Determine time differences

2. Select good antenna pairs, based on correlation amplitude

Set up and solve system of linear equations

Signal arrival time from positions:

$$c^{2}(t_{v}-t_{i})^{2} = (x_{v}-x_{i})^{2} + (y_{v}-y_{i})^{2} + (z_{v}-z_{i})^{2}$$

Use difference between antennas & reorder:

$$x_{\boldsymbol{v}} \cdot 2x_{ij} + y_{\boldsymbol{v}} \cdot 2y_{ij} + z_{\boldsymbol{v}} \cdot 2z_{ij} - t_{\boldsymbol{v},\boldsymbol{ref}} \cdot 2c^2 dt_{ij}$$
$$= r_i^2 - r_j^2 - c^2 (dt_{i,ref}^2 - dt_{j,ref}^2).$$

This can be represented by:

$$\mathbf{A}\vec{v} = \vec{b},$$

Solve with matrix inversion tools

Vertex reconstruction: quality criterion

Main quality criterion is residual:

$$res = \left| rac{ec{b}}{|ec{b}|} - rac{\mathbf{A} \cdot ec{v}}{|\mathbf{A} \cdot ec{v}|}
ight|^2 \cdot rac{1}{N_{chp}}.$$

Require a minimum correlation value to be included as a pair

Residual for signal and noise

Reconstruction error vs residual:

Other quality criteria are applied to further clean out bad reconstructions

Neutrino identification = Background rejection

Strategy:

- Use 10% burn sample
- Estimate appropriate angular cuts
 - Calibration pulsers, surface
- Look only at events outside the angular cut region
 - → Leftover events are not correlated to known signals, need to be rejected by other cuts: QP, residual
- Final cuts at QP=0.6, Log10(residual)=-4
- Estimated background:
 - 0.009+/- 0.010 ARA02
 - 0.011 +/- 0.015 ARA03

Impulsive events, misreconstructed

Thermal noise events

Preliminary Results – 2 Stations

- Expected events = 0.103 (Ahlers 2010)
- No candidates found
- Limit with systematics shown in green band
- Considerable improvement
 - analysis efficiency
 - effective volume

Summary

- ARA is continuing to be built
- First limits from Testbed analysis
 - Diffuse flux: arXiv:1404.5285, submitted to Astropart. Phys.
 - GRB flux: first quasi-diffuse limits above 10¹⁶ eV
 - Publication in preparation
- Deep stations:
 - Preliminary diffuse limits from 2 stations
 - Publication in preparation
- Deep stations see marked improvement in sensitivity
 - Deeper station, more antennas, better quality data
 - Improved (2nd generation) analysis techniques
 - Expect even more refined analysis and trigger in future