

The ExaVolt Antenna (EVA): Concept and Development

Carl Pfendner

GZK Process and Sources

- Greisen-Zatsepin-Kuzmin (GZK):
 Cosmic rays with E > 10^{19.5} eV interact
 with cosmic microwave background
 (CMB) photons
- Process produces BZ neutrinos, some at ultrahigh energies (UHE)
- Neutrinos happily continue on
- UHE neutrinos could also be produced at a source location
 - If observed, will trace back to source
- Low x at Earth
 - Less than 1/km³/year/energy decade
 - Need large volume detectors

$$\mathbf{p} + \gamma_{\text{CMB}} \to \mathbf{\Delta}^* \to \mathbf{n} + \pi^+$$

$$\mathbf{n} \to \mathbf{p} + \mathbf{e}^- + \overline{\nu_{\mathbf{e}}}$$

$$\pi^+ \to \mu^+ \nu_{\mu}$$

$$\mu^+ \to \mathbf{e}^+ \overline{\nu_{\mu}} \nu_{\mathbf{e}}$$

Proceedings of UHECR 2012

Detection technique

- How to get large-scale detection -
 - Brute force: make 100X IceCube
 - Use a different approach radio Cherenkov technique
 - Coherent Cherenkov signal from net current," instead of from individual tracks
 - In dense medium, a ~20% charge asymmetry develops in the shower (positrons annihilated, electrons not)
 - If $\lambda >> R_{Moliere}$ (radial size scale) \rightarrow Coherent Emission
 - Hypothesized by Gurgen Askaryan, 1962
 - Effect observed in ice, water, salt
 - Impulsive bipolar signal
 - Long (~1 km) attenuation lengths in 0.1-1 GHz → large observable volume

Synoptic Detectors

- Synoptic balloons, satellites
 - ANITA, EVA, PRIDE
- Large target volume O(10⁶ km³)

Good as a "discovery" instrument for highest energies (>10²⁰ eV)

In-ice vs. Balloons

- In-ice antennas:
 - lower energy threshold.
 - Reduced visible volume.
- Balloon-borne antennas:
 - Higher energy threshold.
 - Increased visible volume.

In-ice vs. Balloons

ARA37:

 Large number of stations increase the visible volume.

EVA:

- High gain antenna reduces the energy threshold while increasing visible volume.
- EVA antenna gain is 32 dBi compared to 10 dBi for ANITA. This is a factor of 160 improvement.

ExaVolt Antenna (EVA) concept

- Use balloon surface as a part of the detector
 - Focus signal to interior
- Would be the world's largest aperture airborne telescope
 - 1000's of square meters
 - 150-600 MHz (λ_{air}≈0.5-2 m)
- Increase in sensitivity to radio frequency neutrino impulses by factor of 100 over any previous experiment

Recently completed a 3 year feasibility study funded by NASA

P. W. Gorham et al., arxiv:1102.3883

ZPB vs SPB - Flight Consistency

- Zero pressure balloons (ZPB) e.g. ANITA
 - Balloon pressure at equilibrium with ambient pressure at float altitude
 - Shape can change dramatically
 - ANITA: 40% drop in volume
- Super pressure balloons (SPB)
 - Balloon pressure higher than outside pressure
 - Stability due to lobed structure
 - NASA test flights
 - 591NT Dec. 2008, 54 days, 7 Mft³, 1% change in height, diameter

Source: Raven Aerostar

scale model design

Current Design

- SPB 29 Mft³, payload would contain DAQ, much of the electronics
- Feed array separate Vpol and Hpol channels
 - Elevated with respect to the reflector for downward viewing
 - At least three feed antennas tall
 - ~2000 channels

Method of Moments Simulations with NEC

- Simulates the reflector using a wire mesh.
- Reflector is dipole fed.
- Optimization of feed position provides 25 dBi of gain.
- Likely an under-estimate due to sparseness of wire model reflector and it does not account for the non-dipole feed gain.

XFdtd Reflection Simulation

- FDTD discretizes a volume and applies Maxwell's equations on each cell.
- A plane wave illuminates the surface of the balloon and its reflection is propagated to find the focal point.
- A gain of 24 dBi is achieved at the focal point.

Simulations with GRASP

- GRASP is the tool of choice for reflector antenna designers.
 - Fast, flexible; not time domain
- Physical optics simulator fully accounts for the surface shape and the feed antenna gain pattern.
- Surface simulations using an optimized feed illumination pattern results in a peak of 32 dBi.

Hang Test at Wallops Flight Facility (Sept 2014)

1/20th scale model balloon.

Dual-polarized sinuous antenna feeds.

Balloon and feed system.

Scale Model Hang Test

- Suspended a 1:20 scale model balloon with limited instrumentation
- Notable differences from full-scale
 - Fewer lobes: 28 vs 280
 - Only 1 instrumented receiver panel
 - Reflectors = rectangular patches, not continuous strip
 - Transmitter smaller than full collecting area of reflectors

Transmitter/Pulser

- Assembled an impulsive signal transmitter with dish
 - Fast (1-5 GHz) pulser, dual-ridge horn antenna, 1.8m satellite dish
 - Tested and characterized using facilities at the OSU ElectroSciences Lab (ESL)

Hang Test Simulation

• Limited signal region, less focused reflections

Hang Test Results

- Data from scaled model test shows increased gain is achieved with pulse coherence is maintained upon reflection.
- The gain estimated from this measurements is ~11.4 dBi.
- GRASP simulations of the scaled model antenna predict 11.5 dBi while XF7 predicts 10.0 dBi.
- Results are consistent within ~2 dBi lending credibility to the EVA concept.

Expected EVA Results

Table 1: Expected numbers of events N_v for published values of ANITA-II, 3 years of ARA-37, and 150 days of EVA with 80% analysis efficiency.

Model & references N_{ν} :	ANITA-II	ARA	EVA
	(2008)	3yr	150d
Baseline cosmogenic models:			
Protheroe <i>et al.</i> 1996[11]	0.6	13	44
Engel et al. 2001[3]	0.33	11	38
Kotera et al. 2010[12]	0.5	13	38
Strong evolution models:			
Engel et al. 2001[3]	1.0	34	120
Kalashev et al. 2002[13]	5.8	41	312
Barger et al. 2006[14]	3.5	32	91
Yuksel et al. 2007[15]	1.7	50	156
Mixed-Iron-Composition:			
Ave et al. 2005[16]	0.01	1.3	2.5
Stanev 2008[17]	0.0002	0.23	0.3
Kotera et al. 2010[12] high	0.08	2.4	6.4
Kotera et al. 2010[12] low	0.005	0.76	1.4
Waxman-Bahcall (WB) fluxes:			
WB 1999, evolved[18]	1.5	17	98
WB 1999, standard[18]	0.5	5.9	35
$IceCube\ PeV\ E^{-2}$ power-law			
IceCube 2015 [19]	•••	2.9	6.10

Also expect ~300 cosmic ray events from geomagnetic effects

Design Improvements

Top-down view of compacted feed array

- Compact folding design permits larger feed array through the top
- Preliminary bowtie antenna design improves gain over sinuous antenna
 - Unidirectional, meets gain requirements of optimal feed antenna (GRASP simulations give ~31 dBi)
 - Not flat but could be deployed in situ

Summary

NASA

- EVA is a novel design that uses the balloon itself as part of the antenna
- Would increase gain by a factor of ~100 over previous radio neutrino experiments
- Hang test 1:20 scale model was tested (2014) and results are consistent (within 2 dB) with simulation
- Proposal and development in progress for full scale detector

Backup

Challenge

- Bow-tie shape
- Collapsible
- Self-deployable

2016-03-01