

The Askaryan Radio Array:

Overview and Recent Results

Carl Pfendner

Supported by NSF CAREER Award 1255557, NSF ARA Grant 1404266, BigData Grant 1250720

UHE Neutrinos

- Ultrahigh energy (UHE) neutrinos
 - $E > 10^{18} \text{ eV}$
 - Only UHE particle probes at cosmological distances – no horizon!
- Greisen-Zatsepin-Kuzmin (GZK):
 Cosmic rays with E > 10^{19.5} eV +
 CMB → BZ neutrinos, some at
 UHE
- Also expect UHE neutrinos produced at sources
- Low flux at Earth
- Large volume needed!

Proceedings of UHECR 2012

$$\mathbf{p} + \gamma_{\text{CMB}} \to \mathbf{\Delta}^* \to \mathbf{n} + \pi^+$$

$$\mathbf{n} \to \mathbf{p} + \mathbf{e}^- + \overline{\nu_{\mathbf{e}}}$$

$$\pi^+ \to \mu^+ \nu_{\mu}$$

$$\mu^+ \to \mathbf{e}^+ \overline{\nu_{\mu} \nu_{\mathbf{e}}}$$

Radio Detection

- Detection of rare signals -
 - 1. Make 100X IceCube (or...)
 - 2. Radio Cherenkov technique
- Coherent signal from net ~20% charge asymmetry in shower
 - Gurgen Askaryan, 1962
 - Observed in ice, salt, sand, air
 - Impulsive bipolar signal
 - South Pole ice: ~2.8 km thick, cold
 - ~1 km radio attenuation lengths → large observable volume

Askaryan Radio Array (ARA)

- Deploy RF stations in ~100 km² a
- Currently: 3 stations + 1 prototype
- Full plans: 37 stations viewing O(Calibration antennas
- Can reach the low flux of UHE ne
 - $E^2dN/dE < 10^{-8} \text{ GeV/cm}^2/\text{s/sr abov}$
- International collaboration with 12

Deep Deployment

- Important to put stations deep in the ice
- "Firn" changing n(z)
 - top ~150 m of ice
- Causes curvature in paths of rays in ice
- Greater depth → increased viewable volume and observable neutrino incident angles

Viewable volume:

Red – station @ 30 m

Blue - station @ 200 m

Effective volume increases by factor of 3.2 5

THE OHIO STATE UNIVERSITY

Data Filtering

- Radio thermal background, anthropogenic signals, A neutrino signals
- Important to construct efficient, simple filters
- Interferometry = computationally complex
- Deep stations have regular geometry
- Assume plane-wave geometry
- Filter >99% of noise before reconstruction

Reconstruction

- Event position = important provides energy, neutrino direction
- Use interferometry: signal arrives at antennas at different times
- Time delays between pairs of antennas → direction
- Strength/qualities the peak on the map → event type (noise vs signal)
- Anthropogenic noise rejected by position neutrinos don't repeat

Diffuse Searches

- Performed 2 searches for diffuse flux of neutrinos
 - Prototype station, 2 years
 - 2 deep stations, 1 year
- No candidates
- Deep station search improved limit over prototype result
 - Efficiency
 - Effective volume
- Projections: full ARA-37 array will be sensitive to GZK flux models

GRB Search

- Search for neutrinos coincident with Gamma-Ray Bursts (GRBs)
- 2 years of prototype station data
- First targeted search with ARA
- Tightened constraints on timing → relaxation of threshold

- 2.4X improvement in sensitivity
- First quasi-diffuse flux limit above 10¹⁶ eV
- Additional improvements expected:
 - Trigger, analysis techniques

Conclusions

- ARA is a radio-based UHE neutrino detector being built at the South Pole
- Deployment of 3 stations approved for next austral summer (2017-2018)
- 3 neutrino searches completed
 - 2 diffuse (prototype, 2-station)
 - 1 GRB (prototype)
- Further analyses in progress
- Expect the first detection of UHE neutrinos in the coming years!

Source: Jovian Archive

Questions?

APS April Meeting 2017-01-28 11

Backup Slides